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FOREWORD

This supplement to the final report is presented
in response to Paragraph III1.2 of Exhibit A of Contract
NAS8-24017.
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ABSTRACT

The algorithm described is a fast algorithm for minimization of
Boolean functions to a two level AND~OR form. The major advantages
of this algorithm are that it is fast and that it does not require
excessive storage capability. The speed and low storage requirement
allows minimization of Boolean functions with a large number of
variables such as 16. A 16 variable problem is too large to work
manually and must be done a portion at a time using just a few of
the varisbles. This is not a desirable method.

As an example of the performance of the algorithm, a 12 variable
problem with approximately 50 percent of the possible combinations
used, took 21.1 seconds of CPU time on a CDC 6500 computer including
compilation, assembly and load time. Less than 65 K words of storage
were required. From test problems with 8 through 12 variables, a pro=
jected CPU time for a 16 variable problem is 22 minutes and the storage
remains constant because the algorithm was originally set up for the
16 variable problem.

This algorithm thus provides the capability for minimization of
Boolean functions for large number of variables which were previously
done poorly by manual methods and could not be done with a computer
because of excesgive time and storage requirements.
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I. INTRODUCTION

The need for the algorithm that has been developed was generated
as the result of development work on an addressable time division data
system for NASA's Marshall Space Flight Center. This system is con~
trolled by a sequence of addresses generated by a central unit. The
method used to generate the addresses was to decode the state of word
and frame counters contained in the central unit, The logilc required
for this decoding becomes quite extensive unless the address sequence
is very simple. It should be noted that the address sequence used
can also affect the logic required and also may require considerable
effort to determine a useable sequence. 1In work just prior to this,

a computer program was developed to determine the Boolean functions
required to set an address shift register using the data system re~
quirements. These requirements were: the words per frame; the frames
per master frame, and the sampling rate per master frame for each data
point. The Boolean functions generated by this program contained a
large number of terms and needed extensive minimization in order to

be practical.

The first step in development of the minimization algorithm was a
literature search which revealed the early basic work of Quine 1,2 and
McCluskey 3 and the later contribution of Carroll 4, The theorems
developed by Carroll are presented and discussed in Section II since
they were most useful in the development of this algorithm.

1. W. V. Quine, "The Problem of Simplifying Truth Functions",
American Math Monthly, Vol. 59, pp. 5?1~533, October 1952.

2. W. V. Quine, "A Way to Simplify Truth Functions", rican
Math Monthly, Vol. 62, pp. 627=631, November 1955.

3. E. J. McCluskey, Jr, "Minimization of Boolean Functiona",
Bell System Technical Journal, Vel. 35, November 1956.

4, C, C. Carroll, "A Fast Algorithm for Boolean Function Mini~
mization' AD 680305, Project Themig, Auburn University for
Army Miggile Command, Huntsville, Alabama, December 1968.



IT. BASIC PRINCIPLES OF PRIME IMPLICANT GENERATION

This section describes the basic principles used in the algorithms
as described in other sections. A thorough understanding of these
principles is necessary for the comprehension of the algorithms.

The Boolean expression can be represented as a set of vertices
of an n~cube for which the expression is true. n 1is the number of
variables in the cube and 2" is the total number of vertices in the
cube. If the expression is represented by a sum of minterms, then
each corresponds to a vertex of the n=cube. For ease of representation
and computer manipulation each vertex or minterm can be specified by
a binary number obtained by replacing complemented variables by O's
and uncomplemented variables by 1's (eg ABC = 101). This binary number
can then be converted to any other convenlent base such as octal or
decimal. The following discussions will use only binary to avoid con=
fugion, but the concepts are valid independant of the number base used.

The principle of equation reduction is to combine the vertices
of the function into groups called subcubes which can be represented
by a single term containing fewer than n variables. Note that a
subcube has 27°X vertices where x equales the number of variables in the
gubcube. The term for a single vertex has no variasbles, is a minterm and
a zero=cube, 1.,e, 2°, A subcube of a function which is not contained
in any other subcube of the function 1s called a prime implicant,
The minimal solution for an expression in two level AND-~OR form con~
gists of a sum of prime implicants, however not all prime implicants
need to be used. Since prime implicants are subcubes of the n=cube,
it is necessary to understand some numerical properties of subcubes.,
The three theorems below were presented with proofs by C. C, Carroll”.
The proofg are not presented here, however discussions of each theorem
i8 presented to aid in understanding the use of the theorems as pre=
gented in this report.

It is clear that for any subcube there is one vertex which has
the largest bin?fy value and one that has the smallest binary value.
The operation "/\" between two vertices is defined as a bit by bit
AND of the binary numbers (e.g. 1010 /\ 0110 = 0010). If two vertices
vy and v, of an n=cube are such that vy /\ vg = vi, then this
relationshfp is defined as v < v le.g. 001 A ‘1101 = 0101;
therefore 0101<EE 1101). This can be tgought of to mean vy is con~
tained in v,.

1. C, C. Carroll, ibid., p.1l.



= Theorem 1: If ¢ & Cn, then min (c) << max (c).
This theorem states that for any subcube, the minimum vertex
(min (c)) is contained in the maximum vertex (max (c)).

- Theorem 2: vEC 1if v max (c) and min (c)<y
This theorem states that & vertex v of the n~cube C is an
element of the subcube ¢ if and only 1f v 18 contained in the max~
imum vertex max (c) and the minimum vertex min (c) is contained in v.
Theorem 2 proves that the minimum and maximum vertex of a subcube
are sufficient to completely specify a subcube, and Theorem 1 provides
a gimple test to determine if two vertices determine a subcube. It
ig also apparent from theorem 1 that the maximum vertices for all sube~
cubes with a common minimum vertex can be generated directly. This can
be done by taking the O's of min (c) and letting them take on all
possible combinations of 1's and 0's, keeping the 1's of min (c) fixed.
Similarly all vertices of a subcube can be generated by using theorem 2.
Take all O's of min (c) which correspond to 1's of max (c) and let
them take on all combinations of 1's and 0's, keeping fixed the l's
and 0's of max (¢) and min (c¢) which correspond.
An example of subcube generation with a common min (c):
Let min (¢) = 01010. the subcubes
are: 01010, 01010 (the vertex min (c))
01010, 01011
01010, 01110
01010, 01111
glo10, 11010
01010, 11011
01010, 11110

01010, 11111



An example of subcube vertex generation. Take the subcube 01010, 11011,
The vertices of this subcube are

01010
01011
11010
11011

The computer implementation of the two generation processes are
straightforward iterative procedures. For the subcube generator one
starts with the first max (c), which is equal to 2"-1 for the largest
subcube. The remaining max (c)'s are obtained by subtracting binary
numbera called RESILT, from 2".1, RESULT takes on all binary values
that have ZEROs in the positions corresponding to ONEs of min (¢). The
RESULT values are generated in ascending order which generates subcubes
in descending order. Figure II-~1 is a Flow Chart of this process.

The generation of the vertices of the n~cube starts with min (c)
as the first vertex. The complement of max (c) is bit by bit ORed
with this vertex with a binary one being added to the result. Follow-
ing the addition, a bit by bit OR with min (c) is performed féllowed
by a bit by bit AND with max (¢). This process continues until max
(c) is reached. Figure II-2 i8 a flow chart of this process.



Set
Regult = 0

Set Max(c) =
(2"~1)~Result
& Output Subcube

Exit

Set Result =
egult + Min(e) + 1

’
~ Set Result =
Result A Min(c)

FIGURE II~1, FLOW CHART FOR SUBCUBE GENERATOR



Set
v = Min (e¢)

>
\

{

Output

Vertex

Set
v ='v OR Max (c)

v

Set

v=v +1

Set
v = v OR Min (c¢)

v

Set
v = v AND Max (c¢)

FIGURE IY~-2, FLOW CHART FOR SUBCUBE VERTEX GENERATION



IITI. GENERAL DESCRIPTION OF THE ALGORITHM

The minimization algorithm is based on the principles discussed
in Section II. C. C. Carrolll also developed an algorithm of Boolean
function minimization which was used az a basis for the development.

Briefly, the algorithm that has been developed has three parts.
The first part is data preparation, the second part generates a
number of prime implicants some of which may be redundant. The third
part selects a non-redundant set of prime implicants that represent
the original Boolean expression.

The data preparation part of the algorithm defines the size of
the n=cube and 1liste the vertices that represent the Boolean expression
and alsoc those vertices which are DONT CARE, A DONT CARE vertex is
the result-of using feedback in a binary counter to cause it to re=
cycle at non~binary rates. For instance, a four stage binary counter
recycles every sixteen countes. However, with feedback, it can be made
to recycle every 10 counts. Now if a Boolean function is to be used
to express counts 8 and 9 (where 0 is the first count) the vertices 8
and 9 represfnt the Boolean expression and can be expressed by a one=
cube (i.e. 2°). However, counts 10 through 15 can never occur due to
the feedback, The vertices corresponding to these counts are DONT
CARE vertices. 1If these DONT CARE vertices are used,a three«=cube
(1.e. 2°) containing 8 vertices can be used to represent the Boolean
expression., The logic required to implement a three~cube in a 16 state
map 18 one of the four variables. However, the logic to implement a
one~cube is three of the four variables and 1s obviously more costly.

In the prime implicant generation, the algorithm searches the n=~
cube for the largest sgubcubes that will cover all the vertices that
represent the Boolean function. This search beginsg by finding and
retaining the largest subcube whose vertices are either contained in
the function or are DONT CARE and whose lowest vertex is the lowest
vertex of the function. This is a prime implicant. The algorithm
then proceeds to find and retain all other subcubes that contain the
vertices that represent the function (using DONT CAREs when it is
advantageous) except that those subcubes whose vertices are contained
in larger previously retained subcubes are not retained because they
are not prime implicants. A number of thinga are done to reduce com=
puter running time. Among the more important are: Subcubes and their
vertices are calculated rather than performing an increment-by-one
search and then testing for validity; and the search for subcubes is
terminated when all vertices of the function are contained in the re-
tained subcubes (prime implicanta).

1. C. C. Carroll, ibid,, p 1.



The non=redundant prime implicant (PI) selection algorithm is
fairly straightforward. First, all essential PlIs are retained. This
i8 easily accomplished since, during PI generation, the information in=
dicating that a vertex 18 contained in only one PI and the identifi=~
cation of that PI was retained. The selection for a non=redundant
get of PIs is continued by sorting the remaining non~esgsential PIs in
the order of 1) vertices not covered by essential PIs, 2) the size
of the PI subcube., 3) the order of selection., The rationale for this
order is that 1) the PIs covering the most vertices contain the few=
est redundant covered vertices, 2) the largest PI subcubes require
the least logic for implementation, and 3) the PIs selected last may
be bigger than those selected first and are at least the same size.

The algorithm outlined above has been tested on a number of
problems and has always found the minimum normal form (MNF). This
does not mean that it will always find the minimum normal form be~
cause we have no proof that the PI gelection routine will always find
the MNF, However, we have no proof it won't, either.



IV, DATA PREPARATION

The program prepares for the algorithm by first reading a control
card. Thig card consists of 17 fields as shown in Figure IV-1. The
size field controls the size of the Karnaugh Map (MCARR, Figure IV=2)
used by the program. The remalning fielda are used to control the
interpretation of a term of an equation. The bit numbers which are
~ active are inserted into the first fields with all other fields being
zero. Thus for a. four variable problem the first four filelds are
filled with 1, 2, 3, and 4.

The next card(s) are the cards containing the information about
the DONT CARE (excluded) states. This card consists of six fields as
shown in Figure IV«3, The first field is an end~of~data type indicator
and is used only following all cards which contain data (of which there
may be none). The second field contains the first DONT CARE state ex~
pressed in a decimal number. The third field contains the last DONT
CARE state expressed in a decimal number. The fourth field contains
the multiplier. The fifth field contains the first number to be multi~
plied. The sixth field contains the last number to be multiplied.

The data preparation phase of the program first I{nitislizes MCARR
to zero using the size input to the program to determine where to stop.
The program then uses the DONT CARE control cards to set the DONT CARE
state in MCARR. The program uses the following calculation to determine
the bits to set for each DONT CARE control card:

(first state + N) + (multiplier) (Multiplier from + M)

where N = 0,1,2,3, ... and M = 0,1,2,3, ... and when (first state + N) =
last state, then m 18 Incremented and (firat state + N) 18 set to (first
state + 0). After (multiplier from) = (multiplier to) the next card is
processed.

At this point in the data preparation phase, MCARR contains no
care states. The program then reads an equation term in the form:

S1 = Ql Q2 Q3" Q4
QL Q2' Q3
The equation term may be placed in any card columm but may not extend

to the next card, There may not be more than one equation term per
card, )
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MCARR TABLE

ENTRY O ENTRY 1
ENTRY 2 ENTRY 3
ENTRY & ENTRY 5
ENTRY 65532 ENTRY 65533
ENTRY 65534 ENTRY 65535
ENTRY DESCRIPTION
JF | CS8 MPINUM

11

60 BIT
WORDS

30 BIT
ENTRY

JF = J FLAG - 1 octal digit - When set indicates that this is a good high
vertex for a cube,

CS ~ CUBE SIZE =~ 2 octal digits - Set to the cube size which covexs
this vertex.

MPINUM ~ PRIME IMPLICANT NUMBER =~ 6 octal digits ~ This indicates the
number of the cube which covers this

vertex.

If ZERO, the vertex has been

covered by more than one cube. Usged for
essential prime implicant selection.

D - DESCRIPTOR - 1 octal digit - If set

1f

get

If set

If

FIGURE IV-2,

get
and
are

to ZERO indicates bit is ZERO.

to ONE indicates bit is ONE.

to TWO indicates bit is DONT CARE.
to THREE indicates bit was ONE,
has now been covered; CS and MPINUM
uaed only in this state.

MCARR TABLE
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The program reads the card and, using the bit numbers input in the
master control card, interprets the term in the following manner. If
all the bits called out in the master control card are contained in
the equation term, then the bit pattern is used as a binary number
pointing to that single care state. If all the bits called out in
the master control card are not used in the term, then the unused bits
are considered as X state bits and are taken through all possible
gtates and all the resulting states are set into MCARR, The program
then generates all the necessary prime implicants (as described in
Section V) and selects the sufficient prime implicants (as described
in Section VI). The program then determines by looking at the next
card to be read i1f another equation {8 to be reduced.

The program determines the last care (ONE) bit set before it
enterg the prime implicant generation routine.

If another equation 18 to be reduced MCARR is initialized again
and the same DONT CARE control cards are used to generate the DONT
CARE atates. If the card containsg *¥%%* in the first four columns,
the program terminates.

13
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V. PRIME IMPLICANT GENERATION

The prime implicant generatlion routine, Figure V=1, determines
the next non-ZERO low vertex (I) which is not greater than the last
bit set to ONE. If the next I generated 18 greater than the last ONE
bit, the program transfers to the prime implicant selection routine.
This program calculates all upper vertices (J) which with I will form
a prime implicant. All non-ZERO J's are flagged. The program uses
the largest flagged J to form a cube (I,J). The size of the cube
is calculated and saved.

For each vertex MCARR(K) of the cube, the following actions are
taken:

a. If MCARR(K) is a DONT CARE state (=2), the index K 18 saved
in a 1ist (E 1ist) and the E bit counter is incremented.

b. If MCARR(K) is ZERO, the J flag for this J is cleared and
a new J is calculated to form a new (I,J) cube and all 1lists generated
for the old cube are abandoned.

c. If MCARR(K) is a CARE state (=1), the index K is saved in
a list (L 1ist) and the L count is incremented.

d. If MCARR(K) is a COVERED CARE state (=3), the index K is
saved in the E list and E list count is incremented and the size
of the cube covering the vertex 18 examined. If the old cube size
is greater than the size of the cube under examination, nothing further
is done. If the cube under examination is larger than the 61d cube,
the NONCNT counter 18 incremented.

e, The index K is then changed to the value which points to the
next vertex. If K is greater than J, the program begins to deal with
the 1ists and counters generated in the MCARR(K) examinations, other«
wige the examinations continue.

When a cube has passed all the MCARRQK)_examinatiops, the cube
is a prime implicant. For each element in the L 1ist (i.e. CARE K'sg)
the following operations are performed: . g

a. The sige of the current cube is placed in MCARR(L).

b. The prime implicant number is placed in MCARR(L).

The CARE state (=1) is changed to a COVERED CARE astate (=3).
The J flag 18 cleared for MCARR(L).

(2]

Q.
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FIGURE V-1, PRIME IMPLICANT GENERATION FLOW CHART SHEET 1 of 3
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FIGURE V=1, PRIME IMPLICANT GENERATION FLCW CHART SHEET 2 of 3
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FIGURE V=1, PRIME IMPLICANT GENERATION FLOW CHART, SHEET 3 of 3
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For each element in the E list (i.e. DONT CARE K'g) the fol=
lowing operations are performed.

a. The J flag in MCARR is cleared.

b. If MCARR(E) is a DONT CARE state (=2), the next E is processed.

c. The prime implicant number (I,J) in MCARR(E) is cleared.

d. If NONCNT is not ZERO, each MCARR(E) is compared to determine
if the old cube size is larger than the current cube slze, If it is
not, the old cube size is replaced with the current cube size, other-
wise nothing happens.

e. If NONCNT ig ZERO, no action occurs.

After all the elements in the E list have been processed, the
number (I,J) is placed in the prime implicant list. If J isg less
than or equal to I, the program returna to the beginning of the
algorithm to find a new I, otherwise the programs determine & new J
and repeats the above outline for the new (I,J) cube.

18
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VI. PRIME TMPLICANT SELECTION

The prime implicant selection, Figure VI-1, first picks out
the essential prime implicants, A prime implicant is considered
essentigl when one or more CARE STATES are covered by only that
prime implicant., This Is done by examining each element of MCARR
and 1f a prime implicant number is contained in the element, that
prime implicant is essential. FEach vertex of the essential prime
implicant is set to ZERO,

For each non-essential prime implicant two comparison keys
are generated., these are the size of the prime implicants and the
order in which they are generated. The following actions are per~
formed for each prime implicant:

&, Build s major comparison key consisting of the number of
CARE bits (=3) which are covered.

b. Find the largest set of keys using them in order of 1)
number of bits, 2) size of cube, and 3) order generated. If the
major key of the selected prime implicant is ZERO, exit from
program,

c. Select this prime implicant.

d. ZERO gll vertices of the selected prime implicant.

e. Return to atep a.
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VIL. CONCLUSTONS

The computer program that has been developed shows considerable
promise in the minimization of Boolean functions. In particular, it
provides the capability to minimize Boolean functions with up to 16
variables. 1In addition, it has the capability to make use of the
forbidden states when the function is for non=binary systems., The
minimization of Boolean functions during the checkout and test of
the algorithm showed that the algorithm was indeed very fast, that
it did not require excessive storage capability, and that it found
the minimum two level AND=OR representation in all of the test problems.
It may be that the algorithm will always find the minimum but the proof
of this would require considerable effort. Since the algorithm will
always provide a solution that is close to the minimum, this additional
effort would not be warranted except for purely academic reasons.

The results of this program are 80 promising that the next step
of minimization should be undertaken. In this step, the present algor=«
ithm should be modified so that multiple functions can be minimized.
A very simple example of what could be done in this area is where
three functions are implemented in a four variable (A,B,C,D) problem.
If the functions are AD, ABD and ABD, and a NAND=NOR logic family is
uged, the three functions can be implemented separately with a two=
input NAND gate, two three~input NAND gates and three inverters., If
the three functions are considered as a group, it can be done with
two three=input NAND GATES, a two~input NOR gate and two inverters
for a net savings of one inverter. For more complex problems, the
savings can be much greater. This ie particularly true for the smet
equations resulting from the format and address generation which tend
to have similar terms in a number of the set equations.
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